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Abstract

Oil-spill experiments were carried out to observe the behavior of oil under ice cover in NMRI ice model basin.
Oil/water interfacial tension and contact angle of oil/ice/water interface were also measured, using ADSA (Axisym-

metric Drop Shape Analysis) method.

As a result, the authors figure out the following: The contact angle of the interface was 180deg., and on the assumption
of this contact angle, the measured size of the oil slick under flat ice cover was almost equivalent to the size of a very
large axisymmetric oil drop which shape obeys Laplacian equation.

The authors also investigated the past research work of this field, and figured out that the so-called “net interfacial
tension” was equal to the twice of oil/ice interfacial tension, under the same assumption of the contact angle described
above. The net interfacial tension was first introduced by Yapa and Chowdhury (1989) but its theoretical meaning was

not known.

These results were successfully verified by the experiments.
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1 Introduction

The risk of oil pollution has been arisen in the
Sea of Okhotsk from the start of the crude-oil/gas
production at the northern Sakhalin offshore. The
production in winter season is not yet carried out,
but is planned to start from 2004. Therefore the
oil spill in the frozen ocean is not a groundless ap-
prehension. However, research and preparation to
cope with this serious situation seems not enough
in Japan.

To take countermeasures against that, the re-
search project was organized by five research in-
stitutes, including the authors, and is working to
figure out the behavior and method of withdrawal
of spilled oil in a frozen ocean. The authors are
in charge of theoretical analyses and fundamental
experiments. This study is a part of the research
project.

If the oil spills under ice cover, the oil slick may
behave under the effect of buoyancy, interfacial
tensions between oil/water and oil/ice interfaces,
friction from water and ice, and adhesion to the
ice bottom. However, these important parameters
were not yet formulated clearly, except the buoy-
ancy. In the steady state the interfacial tension is
the only force that restrain the oil slick from ex-
panding to thin film so that the formulation of the
tension is of vital requirement. Therefore the the-
oretical analyses in the past were introduced some
empirical parameters, “the net interfacial tension”

by Yapa and Chowdhury (1989) for example, to
analyze the phenomena.

In this study the authors analyzed the effect of
the oil/water interfacial tension theoretically, and
proposed the formulation of the interfacial tension
force and the method to estimate the oil slick size.
To verify the theory, oil spill experiments were
carried out to observe the behavior of oil under
ice cover, in NMRI ice model basin. Oil/water in-
terfacial tension and contact angle of oil/ice/water
interface were also measured, using ADSA (Ax-
isymmetric Drop Shape Analysis). These exper-
imental results meet very well to the theory the
authors proposed.

2 Thestateof theart

2.1 Measurement technique of the interfacial
tension

There are many method proposed to measure sur-
face or interfacial tension. Major methods are:
ring method, hanging plate method, drop weight
method, maximum bubble pressure method, capil-
lary rise method, sessile drop method and pendant
(hanging) drop method. If you want to measure
the interfacial tension but the measurement system
specialized in it is not available, the latter three,
namely, capillary rise method, sessile drop method
or pendant drop method, may be good choices.
Because these methods are based on the visual in-
formation such as a drop shape, so that these do
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sessile drop

Fig. 1: Sessile drop method: the simplest version

not require accurate weight measurement, oppo-
site to the other methods.

As the sessile drop method is used in this re-
search, the following discussion forcuses on it.
This method is based on two assumptions that a
shape of a sessile drop is determined by the body
force (gravity) and the interfacial tension, and that
the shape is axisymmetric. Under these assump-
tions it derives the surface or interfacial tension
from some feature of a shape of a sessile drop on
a levelly flat plate. One of the simplest versions of
the sessile drop method is measuring the height h
from the equator of a drop to the apex, as shown
in Fig. 1. Then the interfacial tension o is derived
as

o = 3 (. )

in which Ap is the difference in the densities of the
two bulk phases, and g is the gravitational acceler-
ation.

This version is very simple, but restricted only
when the drop size is large enough. In addition,
this method requires determination of certain posi-
tions of the drop, the equator and the apex, and the
accurate measurement of them is difficult. Pad-
day and Pitt (1972) proposed an improved method
which uses the height from the flat bottom to the
apex. They also proposed the correction scheme
to apply their theory to smaller drops.

The above methods make use of only a little in-
formation given from the drop shape. There are
another versions which use whole points of the
measured shape to determine the interfacial ten-
sion. The drop shape is a solution of nonlinear
differential equations with two arbitrary parame-
ters: a radius of curvature at the apex and the in-
terfacial tension. Therefore the problem comes
down to a curve-fitting problem. Rotemberg et al.
(1983) proposed the method to determine the in-
terfacial tension by solving the curve-fitting prob-
lem. Modern ADSA (Axisymmetric Drop Shape
Analysis) is based on their analysis or its variants.

2.2 Theinterfacial tension of oil in a frozen
sea

One of the earliest measurement of crude-
oil/water interfacial tension and contact angle
were done by Malcolm and Dutton (1979). They
measured the interfacial tension using two kinds of
crude-oil, flesh water and sea water, with the ses-
sile drop method, and concluded that the interfa-
cial tension was 20 + 5mJ/m? and that the contact
angle was 180° in every case.

Liukkonen (1996) measured the contact angle
of crude-oil/air/ice and crude-oil/water/ice inter-
face, and concluded that the contact angle under
ice cover was 159.92 + 7.83°. The authors are
doubtful of the accuracy of their measurement,
since in their report they only mentioned that the
contact angle was “measured by photographing.”

The above studies did not make use of the mod-
ern ADSA after Rotemberg et al. (1983). As far as
the authors know, not any application of the mod-
ern ADSA to oil/water interface under ice cover is
reported yet.

2.3 The relationship between the interfacial
tension and thefinal slick radius

If the oil spills under flat ice cover, the oil forms a
round slick, thus the slick size can be represented
by its radius. The relationship between the inter-
facial tension and the final slick radius was dis-
cussed by Yapa and Chowdhury (1989). They in-
troduced “the net interfacial tension” o, which
they considered to be derived from oil/water,
ice/water, and ice/oil interfacial tensions and the
contact angle. They also carried out the labora-
tory experiment, and found that these estimation
met the experimental results. However, the physi-
cal meaning of the net interfacial tension and how
to estimate it have not been known.

Here the authors try to formulate the net interfa-
cial tension in different way with that of Yapa and
Chowdhury (1989). The interfacial tension force
fi effecting on a unit length of the slick edge is
expressed simply as

ft = 0On. (2)

The gravity (buoyancy) effects F g, which expands
the slick, is represented as follows, on the assump-
tion of hydrostatic conditions.

Fg = 7(Ap)gRh?.
The final slick radius can be determined as the

radius with which the shrink force 2xRf; and ex-
pansion force Fg are evenly balanced. That is to
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say,
1 2
> (8p)g” = . ®)
Obviously, Eq.(3) corresponds to Eq.(1).

3 Theory of the ADSA

In this study the authors made use of the theory
constructed by Rotemberg et al. (1983). The short
summary of this theory is explained in this section.

3.1 Differential equations of the oil drop
shape

The pressure difference across a curved interface
is described by the classical Laplace equation

1 1
—+ —|=AP, 4
"% &) @
where o is the interfacial tension, R; and R, rep-
resent the two principle radii of curvature, and AP
is the pressure difference across the interface.
In the absence of external forces, other than

gravity, the pressure difference is a linear function
of the elevation

AP = APy + (Ap)gz, ®)

where APy is the pressure difference at a selected
datum plane, Ap is the difference in the densities
of the two bulk phases, g is the gravitational accel-
eration, and z is the vertical height measured from
the datum plane.

Hereafter the sessile drop is assumed axisym-
metric, and the datum plane is placed levelly, tan-
gent to the apex. The x and z axes are placed on
this plane and on the axis of symmetry, respec-
tively, as shown in Fig. 2. The origin is placed at
the apex. Then from Egs (4) and (5),

e BTV 0
where Ry turns in the plane of the paper and
R, = x/sin¢ rotates in a plane perpendicular to
the plane of the paper and about the axis of sym-
metry. Ry is the radius of curvature at the origin of
the x-z coordinate system. (R; = R, = Ry at the
origin.) ¢ is the turning angle measured between
the tangent to the interface at the point (x, 2) and

the datum plane.
The meridian curve can be represented by the
arc length s measured from the origin, as follows:
X = X(S), z=2Z(s).

A geometrical consideration yields the differential
identities

S !
S dz | /

dx

Fig. 2: Definition of the coordinate system

dx dz .
e coS ¢, e sin¢. (7
By definition
1 do
R ds ®)

is the rate of change of the turning angle ¢ with re-
spect to the arc-length parameter s. Hence, com-
bining Eq.(6) with Eq.(8) yields

W _ 2 (b, sing
d_S_R0+ O'Z v (9)

Egs.(7) and (9), and the boundary conditions
x(0) = z0) = ¢(0) =0

form a set of first-order differential equations for x,
zand ¢ as functions of the argument s. For given
Ry and given (Ap)g/o the complete shape of the
curve may be obtained by integrating simultane-
ously these three equations.

To generalize the discussion, these variables can
be non-dimensionalized by Ry, as

5o s go X 5_ 2
Ry’ Ry’ Ro’
Hence the equations (7) and (9) can be rewritten

as follows:
dx

d—ézcos¢

dz .

d—ézsmq) (10)
d—? =2+ (Ap)gRgi— m

ds o X

Here (Ap)gRg/a is the shape parameter and is of-
ten written as 3.
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3.2 Theobjectivefunction and the calculation
method

The differential equations (10) determine the drop
shape with given Ry and 3. To determine the inter-
facial tension, o, the reverse estimation, from the
shape to Ry and g, is required. In addition, the po-
sition of the apex should also be a parameter to be
determined, since it is difficult to accurately mea-
sure the apex of the gently curved surface.

Suppose that u,, n = 1,2,...N are a set of
experimental points which describe the meridian
section of an interface and v = v(s) is a calculated
Laplacian curve from certain Ry and 8. The objec-
tive function is defined as

19 )
£ =5 2, [ v, ()

where d(uy, v) is the normal distance between up
and the curve v.

Practical method to calculate this objective
function is as follows. First, the the differential
equations (10) are numerically integrated, using
small intervals of s so that a set of points on the
curve (x,2) = (RoX, Roz) is obtained. Then, the
smallest distance d between u, and (x, ) can be
adopted as the normal distance:

&= (x= (= X)’ + (2~ (@ -2)° (12

in which (X, Z) is the location of the origin.

X, Z, Ry and B should be determined to min-
imize the objective function E, by making use of
some optimization technique, for example, nonlin-
ear least square method. Rotemberg et al. (1983)
used the Newton-Raphson method to determine
these parameters, and explained the method to cal-
culate Jacobian and Hessian matrices of E analyt-
ically. These matrices are required for the non-
linear least square method. In this study the au-
thors made use of a certain routine in the MIN-
PACK optimization library (Moré et al. (1984)).
This routine determines Jacobian and Hessian ma-
trices numerically and implements the Levenberg-
Marquardt method.

The differential equations (10) were integrated
using 4th order classical Runge-Kutta method.

4 Results of the ADSA measurement

Fig. 3 shows the experimental apparatus to mea-
sure the meridian shape of the oil drop. Mechani-
cal oil #10 was provided for the measurement, af-
ter blackened by oil-solvent dye. The size of drops
was varied so that drops of different shapes were
measured.

N screws to control
the level of the ice plate

the heightt

controller

a syringe to inject oil
under the ice plate

an ice plate

an oil drop

a digital camera

the water basin with a macro lenz

(30cm cubic)

Fig. 3: Experimental apparatus to measure the oil
drop shapes

Examples of the drop shapes and measured
results are shown in Fig. 4. The average of
the oil/water interfacial tension of this oil was
0.0262 J/m?.

The flat lines in the lower graphs of Fig. 4(a)
and (b) represent measured bottoms of the ice
sheets. To measure the contact angle, the differ-
ential equations (10) is integrated until z = Ryz
reaches the ice sheet. ¢ at that time is the con-
tact angle. In this measurement, however, the cur-
vature sometimes did not reach the line before ¢
reached 180°, as shown in Fig. 4(a). That was be-
cause it was hard to accurately determine the ice
bottom from photographs such as Fig. 4.

From limited results of the measurement, the
authors concluded that the contact angle was near
180°. An evidence of this conclusion is Fig. 5.
In this photograph there is a small oil drop which
looks completely spherical. That was because the
contacting surface is very narrow and can be re-
garded as a point. Therefore the contact angle
comes down to 180°.

5 Prediction of the spread of the oil
dlick by way of L aplacian equation

From the above measurement, the interfacial ten-
sion o and the contact angle were determined. If,
in addition, the radius of curvature at the apex Rg
are given, the shape of the corresponding oil drop
(slick) can be calculated by integrating Egs.(10)
from s = 0 until ¢ = 180°. The radius of the slick
is the maximum value of x = RgX. The volume
of the slick can also be calculated by again inte-
grating the shape of the meridian. By varying R
parametrically, the relationship between the vol-
ume and the radius of the oil slick is obtained.
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Fig. 4: Examples of the ADSA measurement

The authors carried out the oil-spill experiments
using The Ice Model Basin at National Maritime
Research Institute. Experimental facilities, condi-
tions and results are reported in Izumiyama and
Konno (2002). In this paper the authors limit
themselves to a consideration of the results of the
experiments under flat ice covers. Fig. 6 shows
examples of the oil slicks viewed from above.

Fig. 5: A photograph of large and small oil drops

Fig. 6: Examples of photographs of the measured
oil slick

Oil Volume-Radius Relationship (0:0.0262J/m2)
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Fig. 7: Comparison of the theoretical estimation
and the experimental results of the oil slick radii

Fig. 7 shows the measured results and theoret-
ical estimation of the oil slick radii. The results
(“Experiment” in Fig. 7) and estimation (‘Theory’)
meet very well each other, especially in the small
volume region. (The line ‘Approx.” is discussed in
the next section.) In the large volume region there
are small descrepancies and the experimental re-
sults are smaller than the theoretical estimation. It
might be because the radii of the oil slicks were
not yet converged so that these were smaller than
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Fig. 8: The illustration of the edge shape of the
oil slick and relationship between the position, the
radius of curvature and the perpendicular direction
of the surface

the final slick radii.

6 Physical meaning of the net interfa-
cial tension

In the preceding section, the authors successfully
estimated the relationship between the size and the
volume of the oil slick, using only the interfacial
tension between water and oil. Therefore it must
be possible to identify “the net interfacial tension”
o, Which was introduced by Yapa and Chowd-
hury (1989) and is discussed in Section 2.3, using
only the oil/water interfacial tension. In this sec-
tion the authors try to represent o, with . The
following matters are assumed.

1. The bottom of the oil slick is flat, except
near the edge, and the edge of the oil slick
is smooth.

2. The thickness of the oil slick h is by far
smaller than the radius R.

3. Contact angle on oil/water/ice interface is
180°.

By using the radius of curvature on the edge r =
r(s), which is defined as shown in Fig. 8, Eq.(4)

can be transformed as follows:

In addition, from the geometrical relationship,

dp _1
ds  r’
Therefore,
_ d¢
AP = O'd—s

To get the interfacial tension force on a unit
length of the slick edge, f; of Eq.(2), the levelly
component of this pressure difference should be
integrated.

ftzf APsing¢ds
arc

B d¢ .
_farccrd—ssmcpds 13)

= f"asinqbdq)
0

=20

Comparing Egs (2) and (13), the following con-
clusion is clearly obtained:

on = 20. (14)

That is to say, the net interfacial tension is twice
as mach as the oil/water interfacial tension.

It should be mentioned that the upper limit of
the interval of integration in Eq.(13) is equal to the
contact angle. Therefore the net interfacial tension
and the final slick radius are functions of the oil/ice
interfacial tension and the contact angle.

To verify this result by the experiments ex-
plained in the preceding section, the approximate
relationship between the oil slick volume and ra-
dius will be formulated. Suppose the oil slick is
large and flat so that the volume V can be approx-
imated to be the product of the thickness and the
bottom area,

V = 7R%h. (15)

In Section 2.3, the relationship between h and o,
are represented in Eq.(3), namely,

240 = o, ®3)
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From Egs.(3), (14) and (15), h is eliminated and
the relationship between V and Ris derived, as fol-
lows.

Loonl k] -2

1/4
@R=((Ap)gvz) . (@6)

Anlo

The comparison between this approximation
and the experimental results is shown in Fig. 7,
in which the line ‘Approx.” shows Eq.(16). It is
obvious that the line is very close to the ‘Theory’
line which is explained in the preceding section.
Therefore this approximation meets both the the-
ory and the experiments well.

The fact that the approximation is very close to
the theoretical analysis will encourage research at-
tempts at the numerical modeling and simulation
of the oil spreading phenomena under ice covers.
The interfacial tension should not be neglected for
the modeling, since it has a strong effect on the
phenomena. In this study its formulation was fig-
ured out, and it had not been reported before, as
far as the authors know. And it is simple: f; = 20
That is to say, the interfacial tension force is twice
of the oil/ice interfacial tension par a unit length.

7 Conclusions

Theoretical analysis were carried out to clarify the
relationship between the oil/water interfacial ten-
sion and the oil/water/ice contact angle, and the
final slick radius. The results were verified by the
experiments. The following conclusions were ob-
tained.

1. The oil/water interfacial tension was success-
fully measured by the ADSA method.

2. The final slick radius can be estimated if
and only if the oil/water interfacial tension is
given.

3. The net interfacial tension, introduced by
Yapa and Chowdhury (1989), is twice as
much as the oil/water interfacial tension, on
the assumption that the contact angle is 180°.
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