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Design of Optimum Propellers
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and
Robert H. Liebeckt

Douglas Aircraft Company, Long Beach, California 90846

Improvements have been made in the equations and computational procedures for design of propellers and
wind turbines of maximum efficiency. These eliminate the small angle approximation and some of the light
loading approximations prevalent in the classical design theory. An iterative scheme is introduced for accurate
calculation of the vortex displacement velocity and the flow angle distribution. Momentum losses due to radial
flow can be estimated by either the Prandtl or Goldstein momentum loss function. The methods presented here
bring into exact agreement the procedure for design and analysis. Furthermore, the exactness of this agreement
makes possible an empirical verification of the Betz condition that a constant-displacement velocity across the
wake provides a design of maximum propeller efficiency. A comparison with experimental results is also
presented.

Nomenclature
a axial interference factor
a' rotational interference factor
B number of blades
b axial slipstream factor
Cd blade section drag coefficient
C, blade section lift coefficient
Cp power coefficient, Plpn3D5
C r thrust coefficient, Tlpn 2D4
C. torque force coefficient
CI' thrust force coefficient
c blade section chord
D propeller diameter, 2R
D' drag force per unit radius
F Prandtl momentum loss factor
G circulation function
J advance ratio, VlnD
K Goldstein momentum loss factor
L' lift force per unit radius
n propeller rps
P power into propeller
Pc power coefficient, 2PlpV37FR2
Q torque
R propeller tip radius
r radial coordinate
T thrust
Tc thrust coefficient, 2TlpV27FW
V freestream velocity
Vi vortex displacement velocity
W local total velocity
w" velocity normal to the vortex sheet
WI tangential (swirl) velocity
x nondimensional distance, firlV
a angle of attack
f3 blade twist angle
r circulation
E drag-to-lift ratio
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~ displacement velocity ratio, VI IV
'TJ propeller efficiency
A speed ratio, VlnR
~ nondimensional radius, rlR = Ax
~c nondimensional Prandtl radius
~o nondimensional hub radius
p fluid density
a local solidity, Bcl27Fr
cf> flow angle
cf>, flow angle at the tip
fi propeller angular velocity

Superscript
, derivative with respect to r or ~, unless otherwise

noted

Introduction

I N 1936, a classic treatise on propeller theory was authored
by H. Glauert. I In this work, a combination of momentum

theory and blade element theory, when corrected for mo
mentum loss due to radial flow, provides a good method for
analysis of arbitrary designs even though contraction of the
propeller wake is neglected. Although the theory is developed
for low disc loading (small thrust or power per unit disc area),
it works quite well for moderate loading, and in light of its
simplicity, is adequate for estimating performance even for
high disc loadings. The conditions under which a design would
have minimum energy loss were stated by A. Betz2 as early
as 1919; however, no organized procedure for producing such
a design is evident in Glauert's work. Those equations which
are given by Betz make extensive use of small-angle approx
imations and relations applicable only to light loading con
ditions. Theodorsen3 showed that the Betz condition for min
imum energy loss can be applied to heavy loading as well.

In 1979, E. Larrabee4 resurrected the design equations and
presented a straightforward procedure for optimum design.
However, there are still some problems: first, small angle
approximations are used; second, the solution for the dis
placement velocity is accurate only for vanishingly small val
ues (light loading), although an approximate correction is
suggested for moderate loading; and third, there are viscous
terms missing in the expressions for the induced velocities.
These viscous terms must be included in the design equations
if they are to be consistent with the classical propeller analysis.
This approach is given later.
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VORTEX FILAMENT (I = 0)

Fig. 2 Definition of displacement velocity v/ in the propeller wake.

(2)
dL

L' = - = BpWf
dr

and in the wake, the circulation in the corresponding annulus
is

develops the Betz condition for heavy loading by including
the contraction of the wake. He shows that sufficiently far
downstream in the contracted wake, the vortex sheet must
be the same regular screw surface for a propeller of minimum
induced energy loss. This optimum vortex sheet acts as an
Archimedean screw, pumping fluid aft between rigid spiral
surfaces.

At the blade station, r, the total lift per unit radius is given
by

AXIS~ F~==----':""';~------
v'

'- '- rVORTEX FILAMENT
V AFTER TIME

" INCREMENT, l>1

"

The purpose of this article is to correct these difficulties
and bring the design method into exact agreement with the
analysis. It is then possible to verify empirically the optimality
of the design. This work was initiated at McDonnell Douglas
in 1980 in response to a requirement for simple estimates of
propeller performance. In-house methods, if they existed, had
been irretrievably archived. An early version was presented
as AIAA Paper 83-0190. Continuous requests for copies of
the paper plus some refinements to the method have moti
vated its publication in the Journal.

Momentum Equations
Detailed axial and general momentum theory is described

by Glauert, I and only a brief summary is given here to em
phasize several important features. Consider a fluid element
of mass dm, far upstream moving toward the propeller disc
in a thin, annular stream tube with velocity V. It arrives at
the disc with increased velocity, V(l + a), where a is the
axial interference factor. At the disc, dm exists in the annulus
21rr dr, and the mass rate per unit radius passing through the
disc is 27TrpV(1 + a), neglecting radial flow. The element dm
moves downstream into the far wake, increasing speed to the
value V(l + b), where b is the axial slipstream factor. Axial
momentum theory determines b to be exactly 2a, whereas the
general theory (which includes rotation of the flow) deter
mines b to be approximately la. Using the axial approxi
mation, which is generally accepted, the overall change in
momentum of the element is 2VaF dm where F, the momen
tum loss factor, accounts for radial flow of the fluid. The
thrust per unit radius T', acting on the annulus can now be
expressed as

By similar arguments, the torque per unit radius Q/ is given
by

dT
T' = dr = 27TrpV(1 + a)(2VaF) (la)

Flow geometry about a blade element at the disc is shown in
Fig. 1, where W acts on the blade element with a, and acts
on the disc at <1>. F goes from about 1 at the hub (where the
radial flow is typically negligible), to 0 at the tip, and is not
unlike the spanwise loading of a wing. The functional form
of this factor was first estimated by Prandtll.2 and a more
accurate, though more complex, form was determined by
Goldstein5 and Lock.6 - 8

W, = W n sin <p

(3)Bf = 27TrFw,

However, for a coordinate system fixed to the propeller disc,
the axial velo.city of the vortex filament would be

Setting the circulation f in Eq. (2) equal to that in Eq. (3)
will ultimately determine that circulation distribution fer) that
minimizes the induced power of the propeller.

In order to obtain fer), it is necessary to relate w/ to a more
measurable quantity. Figure 2 shows the wake vortex filament
at station r and the definition of the various velocity com
ponents there. The motion of the fluid must be normal to the
local vortex sheet, and this normal velocity is W n . Therefore,
the tangential velocity is given by

(lb)Q//r = 27TrpV(1 + a)(2nra' F)

Circulation Equations
At each radial position along the blade, infinitesimal vor

tices are shed and move aft as a helicoidal vortex sheet. Since
these vortices follow the direction of local flow, the helix angle
of the spiral surface is <1>, shown in Fig. 1. The Betz condition
for minimum energy loss, neglecting contraction of the wake,
requires the vortex sheet to be a regular screw surface; i.e.,
r tan <I> must be a constant independent of radius. Theodorsen3

v/ = w,,/cos <p

where the increase in magnitude of v/ over w" is due to ro
tation of the filament. This is analogous to a barber pole where
it appears that the stripes are translating in spite of the fact
that only a rotational velocity exists. It will become clear that
it is convenient to use v', and the corresponding displacement
velocity ratio, , = v/ IV. The tangential velocity is then

W, = V, sin <p cos <p

(5)

(4)f = 27TV2~G/(Bn)

x = nrIV

G = F x cos <p sin <p

and x is the speed ratio given by

and the circulation of Eq. (3) can be expressed as

f3

V (1 + a)

Q r (I-a') ~-D:CP:NE
Fig. 1 Flow geometry for blade element at radial station r.
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where the primes denote derivatives with respect to g, and

Tc = 2T/(pV27TR2) (9a)

Pc = 2P/(pV37TR2) = 2QD.I(pV37TR2) (9b)

(lOa)

(lOb)

T; = I;C - I~C2

P; = I;C + I~C2

Constraint Equations
For design, it is necessary to specify either T, delivered by

the propeller or the power P, delivered to the propeller. The
nondimensional thrust and power coefficients used for design
are

and using these definitions, Eq. (6) can be written asfJ

T'L'

Fig. 3 Force diagram for a blade element.

The circulation equations for thrust T', and torque Q', per
unit radius can be written by inspection of Fig. 3 as

T' = L' cos 4> - D' sin 4> = L' cos 4>(1 - to tan 4» (6a)

I; = 4gG(I - to tan 4»

I ~ = A(I ;l2g)(1 + Eltan 4>)sin 4> cos 4>

I; = 4gG(I + Eltan 4»

I ~ = (1 ;/2)(1 - to tan 4>)cos2 4>

(lIa)

(lIb)

(lIc)

(lid)

Q'/r = L' sin 4> + D' cos 4> = L' sin 4>(1 + Eltan 4»
(6b)

where to is the drag-to-lift-ratio of the blade element. Next,
using Eq. (2), L' can be replaced by f(r) which, in turn, is
related to conditions in the wake by Eq. (3). Based on the
flow in the wake, fer) is given by Eqs. (4) and (5), and T'
and Q' /r are reduced to being functions of 4> and the dis
placement velocity, C = v'lV. The local flow angle 4> will
clearly be a function of the radius; however, at this stage of
the analysis, the optimum distribution C(r) is not yet deter
mined. Several diagrams and an excellent photograph of the
vortex sheet can be found in a 1980 work by Larrabee. 9

Since Cis constant for an optimum design, a specified thrust
gives the constraint equations

C= (1/2/2) - [(1/2/2)2- T)12]112 (12)

Pc = l l C+ 12C2 (13)

Similarly, if power is specified, the constraint relations are

C = - (1/212) + [(1/212)2 + P)12]1/2 (14)

Tc = IIC - 12C2 (15)

where the integration has been carried out over the region
g = go to g = 1.

.1,

Condition for Minimum Energy Loss
At this point, a departure from Larrabee's· design proce

dure is made, and the momentum equations, Eqs. (1), and
the circulating equations, Eqs. (6), are required to be equiv
alent. This condition results in the interference factors being
related to Cby the equations

Blade Geometry
For the element dr of a single blade at radial station r, let

e be the chord and C, the local lift coefficient. Then, the lift
per unit radius of one blade is

a = (2)cos24>(1 - to tan 4» (7a) where f is given by Eq. (4). It follows directly that

a' = W2x)cos 4> sin 4>(1 + Eltan 4» (7b) (16)

Assume for the moment that Cis known; then the local value
of 4> is known from Eq. (8), and the above relation is a
function only of the local lift coefficient. Since the local Rey
nolds number is We divided by the kinematic viscosity, Eq.
(16) plus a choice for C, will determine the Reynolds number
and to, from the airfoil section data. The total velocity is then
determined by Fig. 1 as

where a is given by Eq. (7), and the chord is then known from
Eq. (16). If the choice for C, causes to to be a minimum, then
viscous as well as momentum losses will in most cases be
minimized, and overall propeller efficiency will be the highest
possible value. For preliminary considerations, it is usually
sufficient to choose one C" the design C" for determining
blade geometry. (Any C, specification is permissible as long
as the optimum blade loading distribution, eClr) , is main
tained.) Since a is known from C, and Reynolds number, the
blade twist with respect to the disc is f3 = a + 4>. G is zero

where Eqs. (4) and (5) have been used to express L' in terms
of C, and the terms in epsilon correctly describe the viscous
contribution. Equations (7), together with the geometry of
Fig. 1, lead to the important simple relation

tan 4> = (1 + C/2)/x = (1 + C/2)A/g (8)

Here, Ais a constant, and g varies from go at the hub to unity
at the edge of the disc. The relation between the two non
dimensional distances and the constant speed ratio is

x = Or/V = (r/R)/A = g/A

Recalling the Betz2 condition, r tan 4> = const, Eq. (8)
proves that for the vortex sheet to be a regular screw surface,
Cmust be a constant independent of radius. This is the con
dition for minimum energy loss. It should be noted that Eq.
(8) results from Eq. (7) whether viscosity is included or not.

W = V(I + a)/sin 4> (17)
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at the edge of the disc, and the tip chord is therefore always
zero for a finite lift coefficient.

Design Procedure
Either For K, relation for the momentum loss function can

be selected. For the sake of simplicity, only the Prandtl re
lation is described as

F = (2/1T)arc cos(e-f )

where

f = (B/2)(1- g)/sin </>,

and </>, is the flow angle at the tip. From Eq. (8)

tan </>, = '\(1 + (/2)

(18)

(19)

(20) Fig. 4 Force coefficients for propeller blade element analysis.

so that a choice for { determines the function F as well as </>
by

and the relations for the thrust T' and torque Q' per unit
radius are then

which is simply the condition that the vortex sheet in the wake
is a rigid screw surface (r tan </> = const). For an initial value,
{ = 0 will suffice.

The design is initiated with the specified conditions of power
(or thrust), hub and tip radius, rotational rate, freestream
velocity, number of blades, and a finite number of stations
at which blade geometry is to be determined. Also, the design
lift coefficient-one for each station if it is not constant
must be specified. The design then proceeds in the following
steps:

1) Select an initial estimate for { ({ = 0 will work).
2) Determine the values for F and </> at each blade station

by Eqs. (18-21).
3) Determine the product We, and Reynolds number from

Eq. (16).
4) Determine E and ex from airfoil section data.
5) If E is to be minimized, change C, and repeat Steps 3

and 4 until this is accomplished at each station.
6) Determine a and a' from Eq. (7), and W from Eq. (17).
7) Compute the chord from step 3, and the blade twist

(3 = ex + </>.
8) Determine the four derivatives in I and J from Eq. (11)

and numerically integrate these from g = go to g = 1.
9) Determine { and Pc from Eqs. (12) and (13), or ( and

Tc from Eqs. (14) and (15).
10) If this new value for { is not sufficiently close to the

old one (e.g., within 0.1%) start over at step 2 using the
new (.

11) Determine propeller efficiency as T/Pp and other fea
tures such as solidity.

The above steps converge rapidly, seldom taking more than
three or four cycles. An accurate description of viscous losses
can be obtained by creating another design with E equal to
zero and noting the difference in propeller efficiency. tan </>, = g tan </>

tan </> = [V(1 + a)]/[Or(l- a')] (25)

(22a)

(22b)

(23a)

(23b)

(24a)

(24b)

T' = O)pW2BeCy

Q'/r = (!)pW2BeCx

a = aK/(F - aK)

a' = aK'/(F + aK')

K = CylC4 sin2 </»

K' = C)(4 cos </> sin </»

Equations (23) correct the placement of the factor F used by
Glauert in his equations (5.5) of Chapter VII as identified by
Larrabee. 4

The relation for the flow angle is obtained from Fig. 1 and
Eqs. (23) as

where

For determining the function, F, in Eq. (18), Glauert suggests
the relation sin </>, = g sin </> be used in Eq. (19). It is rec
ommended that Eq. (21) be used instead, Le.,

Again, it is required that the loading Eqs. (22) be exactly
equal to the momentum result Eqs. (1). With the use of the
flow geometry in Fig. 1, this requires the interference factors
to be

and a is given by

(21)tan </> = (tan </>,)/g

Analysis of Arbitrary Designs
The analysis method is outlined here in order to discuss

problems of convergence for off design and for square-tipped
propellers in general, and to point out two minor errors in
Glauert's work. Figure 4, which is simply an alternate version
of Fig. 3, shows the relation between the propeller force coef
ficients, Cy and Cx, and the airfoil coefficients, C, and Cd. The
equations are

Cy = C, cos </> - Cd sin </> = CtCcos </> - E sin </»

Cx = C, sin </> + Cd cos </> = CtCsin </> + E cos </»

which is exact for the analysis of an optimally designed pro
peller at the design point.

The analysis procedure requires an iterative solution for
the flow angle </> at each radial position, f An initial estimate
for </> can be obtained from Eq. (8) by setting {equal to zero.
Since f3 is known, the value for ex in Fig. 3 is f3 - </>, and the
airfoil coefficients are known from the section data. The
Reynolds number is determined from the known chord and
W, which is obtained from Fig. 1 and Eq. (23a), and the new
estimate for </> is then found from Eq. (25). A direct substi
tution of the new </> for the old value will cause adequate
convergence for an optimum design which is being analyzed
at the design point. However, for analysis off-design and for
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nonoptimum designs, some recursive combination of the old
and new values for 4> is required to cause adequate conver
gence. Under some conditions (usually near the tip), con
vergence may nbt be possible at all due to large values for
the interference factors, a and a', in Eq. (23). Since F is zero
at the tip and u is not for a square tip propeller, the value
for a is -1 and a' is +1. Such values are physically impossible
since the slipstream factors are approximately twice the values
at the rotor plane. Wilson and Lissaman to suggest empirical
relations for resolving this problem, whereas Viterna and
Janetzke tt give empirical arguments for clipping the magni
tude of a and a' at the value 0.7 (uiF at the tip is finite at the
design point for an optimum propeller).

For analysis, the conventional thrust and power coefficients
are

Using Eqs. (22) and (24), the differential forms with respect
to gare given by

mation of propeller performance, and the extent of airfoil
data required for propeller analysis exceeds that which is typ
ically used in analysis of wings. Between takeoff, climb, and
cruise, propellers typically operate over a relatively wide range
of blade section Reynolds numbers-a variation by factor of
5 is not uncommon. Also, during takeoff, climb, and wind
milling, some portion of a propeller blade is likely to be stalled,
either positively or negatively. An example set of character
istics for the NACA 4415 airfoil is given in Fig. 5. These
would be supplemented by additional drag data in the un
stalled region for a range of Reynolds numbers.

Empirical Optimality
In Chapter VII of Glauert's work, his equation (2.20) shows

that when blade friction is neglected, the most favorable dis
tribution of circulation is where the displacement velocity is
constant across the wake. Here, the term x 2/(1 + x 2

) is the
small-angle approximation of G, given by Eq. (5) in this ar
ticle. The effect of profile drag is shown by Glauert in his
equation (3.5), which states that the optimum distribution for
the displacement velocity ratio is

~ = ~o - EX (26)

When these have been integrated from the hub to the tip, the
propeller efficiency is

where the effect of profile drag on thrust has been ignored.
In order to study this problem empirically, consider a general
function H(x) and the two first-order terms of its Laurent
series, llx and x, and describe the displacement velocity dis
tribution as

(27)

Fig. 5 Example of airfoil section characteristics including normal and
chord force coefficients.

whereJ = VI(nD) is the advance ratio. Propeller performance
is typically described by plots of CT , Cp , and TJ vs J.

Airfoil Section Data
The proper accounting for blade section (airfoil) charac

teristics has proven essential for accurate and reliable esti-

which includes the case of Eq. (26). It is desired to find values
for 8t and 82 which maximize propeller efficiency subject to
the constraints of Eqs. (10). To solve this problem, ~ in Eqs.
(10) is replaced by Eq. (27). Then, a choice for 8t and 82 will
enable a determination of ~o and a calculation of overall pro
peller efficiency. A systematic study of various propeller con
ditions was undertaken using the design and analysis proce
dures of this article. Nonzero values for 8 t and 82 that caused
an increase in propeller efficiency could not be found under
any conditions. Therefore, it was concluded that a constant
displacement velocity is at least locally optimum whether pro
file drag is considered or not. Momentum and viscous losses
are then uncoupled; former is minimized by constant dis
placement velocity, the latter by choosing a C/ distribution so
that the drag-to-lift ratio is a minimum everywhere.

Some may criticize the authors for including viscous terms
in the development of the optimized circulation distribution
fo,r the propeller design problem. Certainly, this is contrary
to classical lifting-line wing theory where the analogous elliptic
lift distribution is obtained inviscidly. However, it has been
shown that the combined momentum-circulation equations,
Eqs. (7), produce the screw surface equations, Eqs. (8), whether
viscosity is included or not. It is evident in Eq. (11) that the
momentum and viscous terms are directly separable for use
in Eq. (10). The viscous terms, when integrated in Eq. (10),
account for the difference in power and thrust between an
inviscid and viscous propeller design. If one accepts the clas
sical blade element analysis equations as a measure of per
formance, the momentum and viscous losses are indeed un
coupled, and the viscous design equations produce a propeller
with minimal losses.

Alternatively, if one is still concerned about including vis
cosity in the design procedure, a propeller could be designed
inviscidly and the blade section drag simply added to the
inviscid design. This would require that the analysis procedure
be applied with drag set equal to zero when solving for the
induction velocities. The performance of the propeller would
then be obtained by adding drag to this inviscid solution with
out altering the induction velocities. However, this would

30 40 50 60 70 80
a(D~G)

NACA4415

RN = 0.5xl06

-1.0.

0.2

CM C/4
0.1

-30 30 40 50 "SO 70 80
a (DEG)

-.03

-.04
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Table I Propeller design solution

c f3 4> RN a a'

0.5000 0.3424 58.3125 54.8118 0.4449 0.0348 0.0633
0.8958 0.4605 41.8645 38.3637 0.8104 0.0644 0.0365
1.2917 0.4269 32.2669 28.7661 0.9834 0.0804 0.0219
1.6875 0.3569 22.2978 22.7927 1.0295 0.0890 0.0142
2.0833 0.2796 18.7971 18.7971 0.9740 0.0938 0.0098
2.4792 0.1913 15.9619 15.9619 0.7830 0.0968 0.0072
2.8750 0.0000 13.8552 13.3552 0.0000 0.0000 0.0000

Input: brake horsepower = 70, 2 blades; hub diam = I ft, tip diam = 5.75 ft; blade section: NACA
4415. C, = 0.7, velocity = 110 mph, rpm = 24001.
Output: thrust = 207.61 Ib, T/ = 0.86996.
Note: a and a' have been set equal to zero at the tip.

Table 2 Propeller analysis solution

4> C, RN a a'

0.5000 54.8116 0.7000 0.4449 0.0348 0.0633
0.8958 38.3638 0.7000 0.8104 0.0644 0.0365
1.2917 28.7661 0.7000 0.9834 0.0804 0.0219
1.6875 22.7927 0.7000 1.0295 0.0890 0.0142
2.0833 18.7971 0.7000 0.9740 0.0938 0.0098
2.4792 15.9619 0.7000 0.7830 0.0968 0.0072
2.8750 12.5862 0.7000 0.0000 0.0000 0.0000

Input: propeller geometry from Table 1; T, C, and f3 at the same radial locations; velocity = 110 mph,
rpm = 2400.
Output: brake horsepower = 70. thrust = 207.61 lb, T/ = 0.86996.

1.8,-----------------------,

C1 DESIGN

--------
0.93

0.78

0.85

0.83
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0.8

0.2
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Fig. 8 C, distributions for example propeller.
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Fig. 6 Force coefficients for windmill blade element.
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Fig. 7 Example of propeller performance.
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0.04

require an additional layer of iteration to achieve a specified
design thrust or power. In light of the favorable agreement
between the present theory and the experimental results given
later in this article, it is argued that such an increase in com
plexity is not justified.

Windmills
All of the analyses described in this article are directly

applicable to the windmill problem after a minor adjustment
in the angle definitions of Fig. 1. The corresponding flow

Fig. 9 Comparison of theory and experiment.

geometry for a windmill is shown in Fig. 6, where the primary
distinction is that the blade section is inverted (as compared
with a propeller), and the local angle of attack is measured
from below the local velocity vector. Corresponding relations
for the angles are

windmill a = 4> - f3

propeller a = f3 - 4>
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0.3,-----------------,
J·0.914
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d (r/Rnp)

0.1
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Fig. 10 Comparison of propeller analyses thrust coefficient.

as shown in Figs. 6 and 1, respectively. In these figures, C,
for the windmill is negative with respect to that for the pro
peller, and this sign change together with the angle definition
will convert the propeller methods to the windmill application.
For the design case, the input Pe value should be negative,
and the resulting values of v' (and the interference factors a
and a') and Tc will also be negative. (Thrust is of less interest
for a windmill since it typically represents the tower load and
is not a main performance parameter.) Similarly, the analysis
results for a windmill rotor will yield negative values for both
Pc and Te.

Examples
As a sample calculation, the design of a propeller for a light

airplane is considered. The design conditions and the resulting
design are described in Table 1 which gives for each radial
station: blade chord, blade pitch angle, local flow angle, local
Reynolds number, and the interference coefficients a and a' .

This propeller geometry has, in turn, been analyzed at the
design condition and the result is given in Table 2. Agreement
is virtually exact. Analysis over a range of values of the ad
vance ratio, i = V/(nD), provides the typical propeller per
formance plots which are shown in Fig. 7, and Fig. 8 gives
the blade lift coefficient distribution over a range of is where
the design condition is the C, = 0.7 and is a constant line at
i = 0.7.

A calibration of the method is given by comparing its the
oretical prediction with experimental results. Reid 12 has eval
uated several conventional propellers extensively by experi
ment, and one of these has been chosen for comparison.
Figure 9 gives Cp , CT , and T/ vs i for both Reid's experiments
and the corresponding theoretical prediction. The agreement
here is quite good, with most of the disparity occurring after
the blade is stalled. This propeller uses NACA 16-series air
foils, and no poststall data were available.

Figure 10 gives the comparison of the blade thrust coeffi
cient distribution as measured by Reid and calculated by the
method. Two theoretical results are shown: one using F, and
the other using the more complex (from a calculation point
of view) K. In principle, the accuracy of the method should
be better with the Goldstein factor for a propeller with few
blades-this example had three blades-and the two factors
should give similar results as the number of blades is in
creased. The results of Fig. 10 confirm this trend, and the
overall comparison for both factors is regarded as quite good.

Conclusions and Recommendations
The propeller theory of Glauert has been extended to im

prove the design of optimal propellers and refine the calcu
lation of the performance of arbitrary propellers. Extensions
of the theory include 1) elimination of the small angle as
sumptions in the optimal design theory; 2) accurate calcula
tion of the vortex displacement velocity which properly ac
counts for the blade section drag; and 3) elimination of the
small angle assumptions in the Prandtl momentum loss func
tion for both design and analysis. These extensions bring the
design and analysis procedures to exact numerical agreement
within the precision of computer analysis.

The primary approximation remaining in both procedures
is the use of the axial momentum equations which require the
increase in wake velocities to be twice those at the disc. Under
certain conditions this approximation is not good and gives
rise to the unnatural conditions and convergence problems
described in the analysis section. Improvements might be made
by replacing the axial momentum equations with relations
more closely aligned with the general theory, particularly in
those differential stream tubes in which "heavy loading" ex
ists. Such conditions appear to be more prevalent in the anal
yses at off-design conditions than in the design itself, and,
when combined with poststall misknowledge, can lead to large
errors in analysis. However, for design and analysis within
the conventional operating regime, both procedures are sim
ple, accurate, and reliable. This method has been extended
by Page and Liebeck 13 to the design and analysis of dual
rotation propellers. A favorable comparison between theory
and experiment was also observed.
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Analytic Design Methods for Wave Rotor Cycles
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A procedure to design a preliminary wave rotor cycle for any application is presented. To complete a cycle
with heat addition there are two separate-but related-design steps that must be performed. Selection of a
wave configuration determines the allowable amount of heat added in any case, and the ensuing wave pattern
requires associated pressure discharge conditions to allow the process to be made cyclic. This procedure, when
applied, gives a first estimate of the cycle performance and the necessary information for proceeding to the next
step in the design process, namely, the application of a characteristic-based or other appropriate detailed one
dimensional wave calculation that locates more precisely the proper porting around the periphery of the wave
rotor. Examples of the design procedure are given to demonstrate its utility and generality. These examples
also illustrate the large gains in performance that might be realized with the use of wave rotor enhanced propulsion
cycles.

Nomenclature

Introduction

T HE wave rotor is a device that provides direct energy
exchange between gases. An introduction to wave rotor

technology can be found in the literature. 1-3 An important

Subscripts
eft effective turbine inlet temperature
s refers to shock
t total or stagnation quantity
x quantity at engine exit
o ambient flight conditions
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application of wave rotors is for gas turbine topping cycles,
an idea that dates back to the early 1940s 4 .5

The wave rotor improves the overall performance of a con
ventional engine by allowing the combustor exit temperature
to be higher than the maximum allowable turbine inlet tem
perature. The performance of conventional gas turbine en
gines depends on the allowable operating temperature of tur
bine blade materials. Attempts to circumvent this limitation
have renewed interest in wave rotor topping cycles. 6

-
1s

This article presents a design procedure for engine cycles
utilizing a wave rotor to enhance cycle performance. Atten
tion is paid in particular to the general features common to
all wave rotor cycles. To demonstrate the procedure a few
cycle examples are given with an estimate of their perfor
mance.

The discussion focuses mainly on the thermodynamic cycles
possible utilizing unsteady flow. A "wave rotor cycle" refers
to the thermodynamic engine cycle resulting from a wave rotor
design. A "wave cycle" refers to a periodic unsteady flow
pattern in the rotor channels. There is no "particular" or
"best" cycle, but there are general features presented that all
cycles must possess. It is these general features that are the
subject here. Applying these general features allows one to
design a particular wave rotor cycle for any given application
and to estimate its performance. Other interesting applica
tions for unsteady flows not involving heat addition also follow
the general principles discussed here.

An unsteady flow cycle utilized for propulsion involves us
ing shock waves to replace conventional compressors and un
steady expansion rather than conventional steady flow ex
pansion in a nozzle. Shock waves driven by heat addition to
the working fluid constitute a "wave turbine-compressor com
bination" that allows one to avoid the restrictions on peak
temperature imposed by material properties that limit the
performance of present day propulsion systems. The use of
a wave rotor cycle results in a higher efficiency as well as an
increase in power as compared with present cycles.

The wave rotor cycles treated here involve a wave rotor
made up of straight constant area wave channels so that no
shaft power is derived from the wave rotor itself. For the
cycles discussed here the wave rotor is situated between the
conventional compressor and conventional turbine.

The conventional compressor not only charges the wave
rotor but is also used to flush it so a new wave cycle can
commence. The conventional compressor is also the source
of cooling air for the wave rotor which allows it to handle hot
combustion gases. A conventional turbine is used where pos
sible, intercepting hot flows issuing from the wave rotor chan-

sound speed
specific heat at constant pressure
length of rotor channel
Mach number
mass
"rightward moving" characteristic quantity,
speed (u + a)
pressure
"leftward moving" characteristic quantity,
speed (u - a)
heat (added or rejected) per unit mass
gas constant
entropy per unit mass
temperature
time interval
fluid velocity (+ to right, - to left)
cycle work per unit mass
position along channel
fraction of unit mass flow
specific heat ratio, 1.4
efficiency
density
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